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Prediction of fat in intact cereal food products
using near-infrared reflectance spectroscopy‡

Sandra E Kays,∗ Douglas D Archibald† and Miryeong Sohn
Quality Assessment Research Unit, Agricultural Research Service, US Department of Agriculture, Russell Research Center, 950 College
Station Road, Athens, GA 30605, USA

Abstract: To evaluate the feasibility of an intact product approach to the near-infrared (NIR) determination
of fat content, a rapid acquisition spectrometer, with an InGaAs diode-array detector and custom built
sampling device, was used to obtain reflectance spectra (1100–1700 nm) of diverse cereal food products.
Fat content reference data were obtained gravimetrically by extraction with petroleum ether (AOAC
Method 945.16). Using spectral and reference data, partial least-squares regression analysis was applied
to calculate a NIR model (n = 89) to predict fat in intact cereal products; the model was adequate for
rapid screening of samples, predicting the test samples (n = 44) with root mean square error of prediction
(RMSEP) of 11.8 (range 1.4–204.8) g kg−1 and multiple coefficient of determination of 0.98. Repeated
repacking and rescanning of the samples did not appreciably improve model performance. The model was
expanded to include samples with a broad range of particle sizes and moisture contents without reduction
in prediction accuracy for the untreated samples. The regression coefficients for the models calculated
indicated that spectral features at 1165, 1215 and 1395 nm, associated with CH stretching in fats, were the
most critical for model development.
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INTRODUCTION
The fat content of food products is an important aspect
of consumer food choices and is required for nutrition
labeling and monitoring in numerous countries.1–3

Methods used to measure fat content often require
the use of organic solvents and their disposal or
repurification.4,5 Therefore, environmentally benign
methods such as near-infrared (NIR) spectroscopy
have been developed. Prior NIR calibrations for
the successful prediction of fat in mixed cereal
foods have been conducted with ground or milled
products.6,7 Ground samples have the advantage
that they are more homogeneous in composition
and particle size than intact products. Although
homogeneity of composition and consistent and small
particle size (<1000 microns) are desirable qualities in
materials analyzed by spectroscopic techniques,8 NIR
spectroscopy is used successfully to predict protein
and moisture in intact wheat grain and has become
a standard practice for evaluation of grain quality.9,10

At the grain elevator or during on-line processing,
it is more practical and less time consuming if
spectra can be obtained non-destructively on intact

grains or products for assessment of composition.
With this approach the implementation of NIR
technology has been responsible for substantial savings
in cost, increased speed of analysis and decreased
chemical use.

The current study investigated the feasibility of
using NIR reflectance spectroscopy to predict crude
fat in a diverse range of intact cereal products, which
included ready-to-eat breakfast cereals and cereal-
based snacks. A significant variation in particle size is
expected in the majority of the samples due to inherent
differences in products and incidental breakage and
compression during product handling and shipping.
Furthermore, variation in moisture content can occur
due to differences in ambient relative humidity.
Varying conditions of humidity and particle size can
affect the performance of NIR methods.8,11,12 As a
consequence, the study included expansion of the NIR
calibration to include samples with a wide range of
particle sizes and moisture contents for adequate utility
in commercial settings. In addition, repetitive packing
and scanning of individual samples was employed to
ensure acquisition of representative spectra.
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MATERIALS AND METHODS
Samples, sub-sampling and sample treatments
Cereal food samples were purchased from retail
stores and selected so that the model would be
robust to the range of cereal products available in
the marketplace. Products included breakfast cereals,
snack foods, flours, crackers, pastas and baking mixes
and comprised a range of grains, including wheat,
oat, corn, rice, rye, barley and millet with numerous
products having multiple grain types. Many products
contained additives, such as dried fruit, nuts, fruit
juice, cinnamon, honey, salt, sugar and fat, and were
processed by a wide variety of methods including
baking, extrusion, milling, frying and air puffing.

Three to six boxes of each product were required
to obtain adequate material for sample treatments
and spectral and reference analyses. For accurate sub-
sampling, the contents of the boxes were mixed and
poured onto a rotating platform at a constant rate to
give a circular shaped mass. The mass was split along
the diameter forming two sub-samples. The sample
could be divided further by separating along a diameter
at a 90◦ angle to the first to form four sub-samples.
Sub-samples were used for scanning to obtain NIR
spectra, for measurement of the parameters, and for
relative humidity and particle-size treatments.

To simulate various degrees of breakage, samples
were crushed moderately or severely to provide break-
age at two levels, giving three particle size treatments
(ie unaltered, moderate, severe). This was achieved
manually inside heavy polyethylene bags to simulate
moderately and severely mishandled products. Particle
sizes ranged from tenths of millimeters to centimeters
mostly because of the great variety of particle sizes
of the original products. To simulate various sample
moisture levels outside the existing range, samples
were treated by: (1) desiccation using calcium sulfate,
and (2) exposure to 60% or >80% relative humid-
ity air in environmental chambers. This produced
four moisture levels including the unaltered specimen.
Samples with very high fat and sugar content could not
be included in the high relative humidity treatments
as they became flaccid and, in some cases, partially
solubilized by moisture uptake. The particle size and
relative humidity treatments expanded the number of
specimens from 137 to 361 and the relative humidity
treatment increased the moisture content range from
the original range of 23–137 g moisture kg−1 in the
untreated sample set to 22–214 g moisture kg−1 in the
overall group of treated and untreated samples.

Spectroscopic analysis
Near-infrared spectra were obtained with a Perten
Instruments Inc Model DA7000 Spectrometer
(Springfield, IL). The instrument has silicon and
InGaAs diode arrays and an intense broadband light
source, making it possible to measure reflectance from
a large area of the sample surface (approximately 10 cm
diameter). The diodes were centered at 10 nm intervals
but software was used to spline–interpolate spectra to

a data interval of 5 nm. The two spectral ranges of
the instrument are spliced at 950 nm to cover a range
from 400 to 1700 nm. The instrument averages 30
spectra s−1 of acquisition time and a spectral scan
was defined as the average spectrum generated after
1 s of acquisition. A custom-built hopper with a drop
hatch and adjustable sample thickness (2.5–10.0 cm)
facilitated loading and unloading the specimens. To
ensure obtaining a representative spectrum of each
sample and investigate the importance of repacking,
each product (including relative humidity and particle-
size-treated products) was packed into the hopper
against the measuring window eight individual times.
For each repack, the instrument was set to collect
four scans of the stationary specimen. The instrument
reference material is a Spectralon disk (Labsphere,
Inc, North Sutton, NH), which could be inserted in
the custom-built hopper in place of the sample. The
reference was scanned after every second sample (ie
every two by eight repacks). Most of the partial least-
squares (PLS) regression models were generated from
the average spectrum for the first repack. Regression
models were also developed from the average spec-
trum of two, four and eight repacks for each sample to
compare the results with the first repack.

Analysis of fat content
Crude fat content of the untreated samples was
measured by a solvent extraction–gravimetric method
using the Soxtec 1040 Extraction System (Foss North
America, Inc, Eden Prairie, MN), with petroleum
ether as the solvent (AOAC Method 945.16).4 Dry
matter was determined at 105 ◦C in a forced air oven
(AOAC Method 945.14),13 and crude fat expressed
on a dry weight basis.

Calibration development and validation
procedure
The original untreated samples (n = 137) were divided
into calibration (n = 92) and validation (n = 45) data
sets by ranking the samples in increasing order
of fat content and assigning each third sample to
the validation data set. The moisture and particle
size expanded data set (n = 361) was divided into
calibration (n = 243) and validation (n = 118) data
sets by assigning the treated samples to the same
set as their untreated counterparts. Data processing
was performed with the Unscrambler v 8.2 software
(Camo Inc, Corvallis, OR). Initial analysis indicated
that the 1100–1700-nm spectral range was optimal for
the study, partly because of the interference from color
at shorter wavelengths. Partial least-squares regression
(PLS)14,15 was used to develop calibrations. The use
of Martens’ Uncertainty regression16,17 did not afford
any advantage in model development for this data set.
Spectra for each calibration data set were preprocessed
with: (a) multiplicative scatter correction,18 to partially
correct for baseline differences; and (b) second-
derivative processing calculated by the Savitzky–Golay
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convolution method using a cubic polynomial fit and
a window width of seven.19,20

Random cross-validation was used to evaluate the
models.15 Pre-processing was the optimum required
to improve the root mean square error of cross-
validation (RMSECV) of predicted versus reference
data for the PLS regression model compared with
PLS without preprocessing (or spectra processed
with other combinations of scatter correction and
derivative). The optimum number of PLS factors
used to predict fat content was determined by cross-
validation. Performance of each PLS model was
first reported as RMSECV, multiple coefficient of
determination (R2) and bias of the calibration. For
outlier detection, the x-variables T2 Hotelling test and
y-variables residuals were examined.

Using the model to predict the independent
validation samples also tested performance of each
PLS model. Performance was reported as the root
mean squared error of prediction (RMSEP), which
is corrected for bias, the coefficient of determination
(r2), and the bias15,21 of the linear regression of NIR-
predicted versus reference values for fat content. The
ratio of deviation to performance, or RPD, is the
ratio of the standard deviation of the reference values
to the RMSEP and provides a method-independent
standardization of the RMSEP.22 Correlation methods
with RPD values of 3.1–4.9 are, in general, considered
adequate for screening purposes and values of 5.0–6.4
are adequate for quality control.22

Additional models were developed with the original
untreated samples (n = 89) after two, four and eight
repacks using identical processing to the above models.
The original calibration and validation samples from
the first repack were then combined and a model devel-
oped using the full set of untreated samples (n = 137).
Likewise, a calibration was developed using the full set
of untreated and treated samples (n = 361). The cal-
ibrations with the combined data sets were developed
with identical processing to the above models.

RESULTS
Spectral characteristics
The spectra obtained were typical of cereal food
products (Fig 1). Products with higher fat content had
sharper peaks at 1212 nm, the second overtone region
for CH stretching vibrations. There was a broad overall
peak around 1450 nm, which is a first overtone region
for OH groups. Sharp peaks were observed, within this
broader peak, in high sugar/sugar-coated samples at
1430–1440 nm, corresponding with the first overtone
for OH groups in carbohydrate.8,23

Reference analysis of fat content
Values for crude fat content measured by AOAC
Method 945.164 ranged from 0.2 to 247 g fat kg−1

and the standard error of the laboratory determinations
was 2.0 g fat kg−1.23 Values for the range, mean and
standard deviation of the samples in the calibration

Figure 1. Representative NIR spectra [log (1/R)] of untreated, intact
cereal food products. Samples with high fat content have sharper
peaks at 1212 nm and samples with high crystalline sugar content
have characteristic peaks at 1430–1440 nm.

Table 1. Distribution of fat content (g fat kg−1) for cereal product

samples used in the calibration and validation data setsa

Data set n Range Mean SD

Original calibration
set (untreated
samples only)

89 0.2–247.0 41.6 57.9

Original validation
set (untreated
samples only)

44 1.4–204.8 40.5 54.1

Expanded
calibration set
(untreated, RH
and PS treated
samples)

241 0.2–247.0 23.8 36.0

Expanded
validation set
(untreated, RH
and PS treated
samples)

117 1.4–204 24.3 35.9

Relative humidity
treated samples

25 1.4–37.9 17.6 12.8

Particle size
treated samples

26 1.4–37.9 14.0 10.2

Relative humidity
and particle size
treated samples

22 1.4–37.9 14.6 10.4

Original data set
(combined
untreated
samples)

134 0.2–247.0 41.6 56.3

Expanded data set
(combined
untreated, RH
and PS treated
samples)

358 0.2–247.0 24.6 37.0

a n = number of samples; SD = standard deviation; RH = relative
humidity; PS = particle size.

and validation data sets, and the combined data sets
(after the removal of outliers) are presented in Table 1.
The ranges of fat content for particle size treated
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and relative humidity treated samples are narrower
as low fat samples (0–38 g kg−1) were used for these
treatments.

Calibration for fat content
Cross-validation and validation statistics for the
models developed with the original and expanded
data sets are given in Table 2. Overall performance of
the original model when predicting the independent
validation samples was found to be adequate for
screening purposes with RPD values of 4.58. Three
outliers, one spectral and two residual, were identified
in the original calibration sample set and removed
and one residual outlier was identified and removed
from the original validation sample set. The same
untreated samples were residual outliers in the
expanded calibration and validation data sets and were
removed; however, the spectral outlier that occurred
in the original calibration data set was not an outlier in
the expanded calibration data set. The residual outlier
in the validation data sets and one of the two residual
outliers in the calibration data sets had a NIR predicted
value substantially higher than the reference value.

When the validation samples were separated into
the treatment types, it was observed that the expanded
model predicted the original untreated validation
samples with the same accuracy as the original model
(Table 3). The expanded calibration predicted the fat
content of the relative humidity- and particle-size-
treated validation samples with better accuracy than
the original model having RMSEP of 8.2–9.0 g kg−1,
compared with predictions by the original model,
having RMSEP of 11.1–12.2 g kg−1 (Table 3). The
greatest improvement was seen for the samples with
both relative humidity and particle-size treatments.

Averaging two, four or eight repacks did not improve
the accuracy of the original model (Table 4). However,
the cross-validation performance of the models was
improved when calibration and validation samples
were combined to develop models with a larger
number of samples (Table 5).

Regression coefficients and variation in fat
concentration
The regression coefficients show that analytically use-
ful absorptions for the original PLS model (n = 89)
are at 1165, 1215 and 1395 nm, which are all bands
associated with absorption by CH groups in lipids
(Fig 2A).8,24 They are the CH second overtone region
at 1165 and 1215 nm and CH combinations region at

Table 3. NIR prediction of fat (g kg−1) by PLS regression models in

untreated and treated validation samplesa

Validation samples

Model Treatment n RMSEP r2

Original (n = 89) None 44 11.8 0.98
RH 25 11.1 0.70
PS 26 11.3 0.74

RH + PS 22 12.2 0.61
Expanded (n = 241) None 44 11.0 0.98

RH 25 9.0 0.78
PS 26 9.0 0.79

RH + PS 22 8.2 0.75

a n = number of samples; RMSEP = root mean square error of
performance; r2 = coefficient of determination; RH = relative humidity
treated; PS = particle size treated.

Table 4. Calibration and validation statistics of PLS models to predict

fat (g kg−1) in the original cereal food products when multiple repacks

are used to obtain NIR spectraa

Number of repacks

Statistics 1 2 4 8

Calibration
RMSECV 15.8 16.8 15.3 14.8
R2 0.96 0.96 0.96 0.97
Bias −0.1 <−0.1 −0.5 −0.4
Slope 0.93 0.93 0.94 0.93
Factors 5 5 5 5
n 89 89 89 89

Validation
RMSEP 11.8 12.7 11.8 11.2
r2 0.98 0.98 0.98 0.98
Bias −0.4 0.2 1.6 1.2
Slope 1.01 1.03 1.01 1.00
n 44 44 44 44

a n = number of samples; R2 = multiple coefficient of determination;
RMSECV = root mean square error of cross validation; RMSEP = root
mean square error of performance; r2 = coefficient of determination.

Table 5. Cross-validation statistics of NIR models for prediction of fat

(g kg−1) in intact cereal products using combined data setsa

Model n Factors RMSECV R2

Original (combined samples) 133 5 14.0 0.97
Expanded (combined samples) 358 5 12.6 0.94

a n = number of samples; R2 = coefficient of determination;
RMSECV = root mean square error of cross-validation.

Table 2. Calibration and validation statistics for PLS regression models for the NIR prediction of fat (g kg−1) in intact cereal productsa

Calibration Validation

Model n Factors RMSECV R2 n RMSEP r2 Bias Slope RPD

Original 89 5 15.8 0.96 44 11.8 0.98 −0.4 1.01 4.58
Expanded 241 5 13.5 0.93 117 11.2 0.98 −1.9 0.95 3.20

a n = number of samples; R2 = multiple coefficient of determination; RMSECV = root mean square error of cross validation; RMSEP = root mean
square error of performance; r2 = coefficient of determination; RPD = standard deviation of the reference method/RMSEP.
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Figure 2. Regression coefficients for the PLS regression model
developed with (A) the original, untreated, intact cereal products
(n = 89) and (B) the expanded data set containing the original
untreated cereal products and the relative humidity treated and
particle size treated cereal products (n = 241).

Figure 3. Second derivative NIR spectra of cereal food products
containing a broad range in fat content (1, 50, 100, 200 g fat kg−1).

1395 nm. The PLS model with the expanded data set
also has major variation at 1165, 1215 and 1395 nm
(Fig 2B). Minor variation was also seen in the 1365
and 1480 nm regions. These regions may be associated
with CH groups in carbohydrate at 1365 nm and NH
groups in protein at 1480 nm. Water does not seem to
be involved in either of the two models. Similar obser-
vations were made from the regression coefficients of
the PLS models developed with the full data sets.

When the second derivative spectra of samples
with varying fat contents (1, 50, 100 and 200 g kg−1)
are compared, systematic changes in absorbance are
observed at 1165, 1215 and 1395 nm (Fig 3). These
areas correspond with the areas of greatest influence in
the regression coefficients for the PLS models (Fig 2).

DISCUSSION
Traditional measurements of fat by AOAC or AACC
methods are very time consuming and often involve
the use of organic solvents with the generation of
solvent waste.4,5 Spectroscopic methods, such as NIR
spectroscopy, are rapid and eliminate the need for
chemicals and chemical waste disposal; therefore NIR
spectroscopy was investigated as a possible method
of screening products on-line for fat content. NIR
spectroscopy has previously, been used for prediction
of fat in ground cereal products, with residual
standard errors of performance of 9.6–11.0 g kg−1

and coefficients of determination (r2) of 0.98–0.99.6,7

The current study attempted to develop a model
to predict fat content in intact rather than ground
cereal products with the aim of eliminating sample
preparation time to enable more efficient screening by
a manufacturer or food processor. To facilitate this,
the instrument used was a rapid-scanning diode-array
spectrometer fitted with a custom-made hopper to
enable rapid delivery of the sample for scanning. It
was found that, using this technique to obtain NIR
spectra and using PLS regression, a model could be
developed having a root mean square standard error of
performance of 11.8 g kg−1 (range 1–205 g kg−1) and
r2 value of 0.98. On the basis of these statistics and
an RPD of 4.6, the method is suitable for screening
purposes and has utility for monitoring fat content in
large quantities of cereal products very rapidly without
sample preparation. More accurate reference analysis
can then be used for samples not in compliance with
labelling or not agreeing with expected composition.

A prior model constructed for prediction of total
dietary fiber in intact cereal products required
6–7 repacks of the sample to be averaged to
obtain optimum model performance.12 This may be
attributed to heterogeneity of the samples due to
large differences in particle sizes within and between
products and the variation in shapes of individual
sample units. In the current study, the averaging of
additional repacks did not improve performance of the
model to predict fat content. This may be because the
signal for fat is stronger than that for dietary fiber and
little interference is coming from other constituents.
In addition, fat which is added during processing may
be more evenly distributed than dietary fiber in the
products.

Increasing the scope of the NIR model to include
moisture and particle size variation did not greatly
affect the accuracy of the model for prediction of
fat in the untreated samples scanned ‘as is’ from the
product packaging. The expanded model did have
improved prediction errors and r2 values, compared
with the original model, for samples treated with
different relative humidity environments. However,
the expanded model has not been tested for treated
samples with >38 g fat kg−1 and further research would
be required to test such samples. The limited fat range
for treated samples in the expanded model may be
responsible for the lower r2 values observed in the

1600 J Sci Food Agric 85:1596–1602 (2005)



NIR prediction of fat in intact cereal products

prediction of these samples, compared with that for the
untreated samples. Increasing the variation of particle
sizes in the model resulted in improved prediction
of crushed or broken samples, indicating that the
inherent variation in particle sizes and structures
of the products (ranging from flour to breakfast
cereals and crackers) was not sufficient to represent
additional crushing or breaking. There are several ways
that broken or crushed products might be spectrally
different from the intact products: (1) by exposure
of the interior of products, (2) by the generation of
fine articles, and (3) by changing the overall light
scattering of the cereal food product. An expanded
model of the kind developed here would be useful in
circumstances where increased handling of products
may cause crushing or breakage and in circumstances
where ambient relative humidity is expected to vary.
The greatest improvement in prediction results was
for the samples with both moisture and particle-size
treatments.

Three residual outliers occurred in the data set
(one calibration and one validation sample) and
the NIR models substantially over-predicted two
of them compared with the reference method. In
some foods heat treatment during processing can
result in alteration of lipids such that they are not
readily extracted by solvent alone;25 therefore, total
fat content might have been underestimated by the
reference method in two outlier samples.

In conclusion, a near-infrared reflectance model
was developed for the prediction of fat in intact
cereal products, which is sufficiently accurate for
screening samples. Screening can be accomplished
rapidly without the need for repacking the sample and
without the use of chemicals and the need to dispose
of them. The NIR model was expanded to include
samples with a wider range in moisture content and
particle sizes without loss in prediction accuracy for
the original, untreated samples. Regression coefficients
suggest that the spectral features that are most
important for the models arise from CH stretching
in fats with little interference from other components
found in cereal food products.
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